

Sol 4. Given: Three circles with centres at C_1 , C_2 , C_3 and with radii 3, 4 and 5 respectively. These three circles touch each other externally as shown in the figure.

P is the point of intersection of the three tangents drawn at the points of contacts L, M and N. Since lengths of tangents to a circle from a point are equal,

$$\therefore PL = PM = PN$$

Also $PL \perp C_1C_2$, $PM \perp C_2C_3$, $PN \perp C_1C_3$

Clearly P is the incentre of $\Delta C_1 C_2 C_3$ and its distance from point of contact i.e., PL is the radius of incircle of $\Delta C_1 C_2 C_3$. In $\Delta C_1 C_2 C_3$, sides are

$$a=3+4=7, b=4+5=9, c=5+3=8$$

$$\therefore \quad s = \frac{a+b+c}{2} = 12 \;, \quad \therefore \quad \Delta = \sqrt{s(s-a)(s-b)(s-c)}$$

$$=\sqrt{12\times5\times3\times4} = 12\sqrt{5}$$
, Now $r = \frac{\Delta}{s} = \frac{12\sqrt{5}}{12} = \sqrt{5}$